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Abstract: Self-replicating melodic loops have already been discussed in the last section 
of the author’s book Self-Replicating Melodies, and in a more mathematical article by 
David Feldman, and employed in several compositions by Johnson and other 
composers. This presentation is an introduction to the idea, along with computer output 
of orbit structures, and some other more recent observations. 
 
 
In New York in the early 70s a number of composers of my generation were reacting 
against the American academic musical tradition, best known in Europe in the examples 
of Elliott Carter and Milton Babbitt. We wanted something simpler, something that 
spoke more directly to a wider audience. Of course, our reaction was to become known 
as American minimalism, and the best known segment of it was the repetitive music of 
Terry Riley and Philip Glass and others, but there were other important forms: the long 
drone tones of La Monte Young, the meditative sounds of Pauline Oliveros, the 
sustained microtonal textures of Phill Niblock, the acoustical experiments of Alvin 
Lucier, and of course, pieces on limited scales, such as John Adams’ Shaker Loops and 
my own Four-Note Opera (1972). As the ‘70s went on, however, I found myself 
increasingly attracted to the more rationally organized forms of minimalism, such as the 
logical melodies of Frederic Rzewski. I had been playing piano duets with Philip 
Corner, another colleague who liked to count notes and calculate logical sequences, and 
it was really in playing piano with him that I began to appreciate melodic loops, 
sometimes playing them in unison in different tempos, like this: 
 
A b c a b c a b c a b c a b c…  
A    b    c    a… 
 
This is a trivial case, since any loop of n notes can be in unison with itself when played 
(n + 1) times slower or faster. I wanted to go further, and find more interesting ways of 
making loops within loops, and one day I decided to consult my friend David Feldman 
with this question: How could I write a melodic loop of, say, 15 notes, in such a way 
that one will hear the same melody if one listens to every note, or to every second note? 
Feldman is himself a composer, but he is also a professional mathematician, and he was 
able to answer the question a couple of days later. He explained that I could write 
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whatever notes I desired, as long as are were not more than five notes in the scale, and 
provided that they fall together on the loop in this way. 
 
(0) 
(1 2 4 8) 
(3 6 9 12) 
(5 10) 
(7 11 13 14) 
 
This means that note 0 can be anything, but that notes 1, 2, 4, and 8 of the loop must be 
identical, notes 3, 6, 9, and 12 must be identical, and so on. With this information I 
wrote the first "self-replicating melody," which was to become Rational Melody No. 15 
(1981). Sometimes we find extraordinary things and just don't see any way of going 
further with them until much later, and it was more than 10 years later that I began to 
realize how many things this principle would lead to. 
 
I won't pretend to be able to really explain how these orbit structures come about, as this 
is a job for a mathematician well versed in group theory, but for musicians, let me 
demonstrate how one might compose a self-replicating melody without really knowing 
about such things. Let's say that we want to compose a seven-note loop that makes a 
copy of itself at 2 : 1. Since we must be able to hear the same melody at the two 
different tempos simultaneously, we have to see how the seven notes of the fast loop 
will fall against the seven notes of the slow loop:  
 
0  1  2  3  4  5  6  0  1  2  3  4  5  6  0… 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0… 
 
Note 1 of the slow melody occurs at the same time as note 2 of the fast melody, and 
note 2 of the slow melody occurs at the same time as note 4 of the slow melody, so it is 
clear that notes 1, 2, and 4 must all be the same. Notes 3, 5, and 6 also must be identical, 
since they sometimes occur simultaneously, so now we can deduce that there are three 
orbits in this form: 
 
(0) 
(1 2 4) 
(3 5 6) 
 
In other words, what I call "the solution loop" must be a melody on a three-note scale 
that has the form 0 1 1 2 1 2 2. Here you can see how the two different speeds fall in 
unison if a seven-note loop employs three pitches in this way : 
 
0  1  1  2  1  2  2  0  1  1  2  1  2  2…   
0 1 1 2 1 2 2 0 1 1 2 1 2 2 0 1 1 2 1 2 2 0 1 1 2 1 2…  
 
 
Naturally, if the loop at half time is in unison with the loop at the original tempo, the 
same loop at quarter time must be in unison with the loop at half time, and we can 
continue with voices 8 times slower than the original, 16 times slower, and so on, and 
they will all be in unison. 
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There is no way to construct an eight-note loop in such a way that it will self-replicate at 
2 : 1, because 8 is divisible by 2. An eight-note loop can make a copy of itself at 3 : 1, 
however, or 5 : 1, or 7 : 1 in these ways: 
 

3 : 1:   (0) (1 3) (2 6) (4) (5 7) 
5 : 1:   (0) (1 5) (2) (3 7) (4) (6) 
7 : 1:   (0) (1 7) (2 6) (3 5) (4) 

 
There are five different orbits at 3 : 1 and 7 : 1, and six different orbits at 5 : 1, so we 
can have many different notes in the scale. There is another orbit structure that I find 
more interesting however.  
             (0 6) (1 5) (2 4) (3 7) 
 
Here there are only four orbits, but they are arranged in such a way that, if we set the 
starting times right, they permit our melodic loop to make copies of itself at all of the 
above ratios, and in fact, 9 : 1, 11 : 1 (11 modulo 8 = 3) and every other odd numbered 
ratio as well. 
 
0 1 2 3 2 1 0 3 0 1 2 3 2 1 0 3 0 1 2 3 2 1 0 3 0 1 2 3 2…  
      0   1   2   3   2   1   0   3… 
0     1     2     3     2     1… 
      0       1       2       3… 
 
As I was studying all this, quite a few months after completing Self-Similar Melodies, I 
found it necessary to write a computer program that would compute the orbit structures 
of loops I might want to use someday. Good mathematicians told me that my 58 pages 
of computer output, which considered all the possible self-replicating loops of 36 notes 
or less, is completely trivial, because they can figure out the orbit structures for any 
given situation about as easily as we can punch out multiplication on our calculators. 
But for me the exercise was not at all a waste of time, and I often refer to my 58 pages 
of orbit structures when I am looking for one that has particular characteristics. Let us 
look at all the possible self-replicating loops of 13 notes, for example: 
 
Loop of 13, ratio of 2 
(0) 
(1 2 4 8 3 6 12 11 9 5 10 7) 
 
Loop of 13, ratio of 3 
(0) 
(1 3 9) 
(2 6 5) 
(4 12 10) 
(7 8 11) 
 
Loop of 13, ratio of 4 
(0) 
(1 4 3 12 9 10) 
(2 8 6 11 5 7) 
 
Loop of 13, ratio of 5 
(0) 
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(1 5 12 8) 
(2 10 11 3) 
(4 7 9 6) 
 
Loop of 13, ratio of 6 
(0) 
(1 6 10 8 9 2 12 7 3 5 4 11) 
 
Loop of 13, ratio of 7 
(0) 
(1 7 10 5 9 11 12 6 3 8 4 2) 
 
Loop of 13, ratio of 8 
(0) 
(1 8 12 5) 
(2 3 11 10) 
(4 6 9 7) 
 
Loop of 13, ratio of 9 
(0) 
(1 9 3) 
(2 5 6) 
(4 10 12) 
(7 11 8) 
 
Loop of 13, ratio of 10 
(0) 
(1 10 9 12 3 4) 
(2 7 5 11 6 8) 
 
Loop of 13, ratio of 11 
(0) 
(1 11 4 5 3 7 12 2 9 8 10 6) 
 
Loop of 13, ratio of 12 
(0) 
(1 12) 
(2 11) 
(3 10) 
(4 9) 
(5 8) 
(6 7) 
 
Since 13 is a prime number, all ratios from 2 to 12 are possible, and four of these 
produce only two orbits, which do not permit very interesting two-note melodies. It is 
not surprising that the orbits are the same whether the ratio is 3 : 1 or 9 : 1, since 9 is 
three times three, but note that the results are completely different when the ratio is 2 : 1 
or 4 : 1 or 8 : 1. A number of other observations might be made, but let me leave you to 
do your own research here and conclude with something else. You may find this 
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information useful, and probably won't, but it is a good example of how computer lists 
can be useful, even when mathematicians tell us that the information is trivial. 
 
Naturally scales of only three or four notes often seem too limited, and one question that 
interested me ever since the beginning of this investigation was how to permit the 
complete chromatic. What is the smallest loop possible that permits 12 orbits, the 
complete chromatic scale? I posed this question to very good mathematicians like 
Feldman, and my friend Jean-Paul Allouche, and they couldn't tell me. It is not hard to 
find loops with 25 or 30 different notes, that can have 12 or more orbits, but it is 
difficult to say with any certainty that one has found the shortest one. Only after making 
my 58-page list was it clear, much the surprise of everyone, that the answer to my 
question was a loop much shorter than anyone expected, a loop only 16 notes long, with 
this orbit structure. 
 
Loop of 16, ratio of 9 
(0) 
(1 9) 
(2) 
(3 11) 
(4) 
(5 13) 
(6) 
(7 15) 
(8) 
(10) 
(12) 
(14) 
 
Unfortunately, the loop does its thing only at a ratio of 9 : 1, which is musically a little 
difficult to hear and work with, but it is information that can perhaps be useful for 
composers who like difficult things. It is something that a minimalist like myself can 
turn over to maximal composers, like Elliott Carter and Milton Babbitt. 
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